Highly Concurrent Fault
Tolerance Computing using
Software Transactional Memory

Wenbing Zhao

Cleveland State University

Outline

* Motivation

* Background

* Fault tolerance computing using STM
* Conclusion

Motivation

* Replication is an essential technique to ensure
high availability
* Active replication (state machine replication)

— Requires deterministic replicas
— Not appropriate for multithreaded applications

* Passive replication
— Requires frequent incremental state transfer

— Either resort to process state checkpointing (very
inefficient) or imposing the duty on applications
(intrusive and error prone)

4/9/2008 Wenbing Zhao, NEONET-2008

Approach

* We decide to use passive replication with
software transactional memory

* The combination of the two enables highly
concurrent fault tolerance computing

4/9/2008 Wenbing Zhao,

Software Transactional Memory

* STM is a concurrency control mechanism for
controlling access to shared memory

— It is analogous to transaction processing: a group of
Instructions is executed atomically

— |t serves as an alternative to lock-based
synchronization

— STM is optimistic: all changes within a transaction are
temporary until the transaction is committed. If the
Intermediate result is exposed to another thread, the
transaction is aborted

I AN ~ '

Wenbing Zhao, NEONET-2008

4/9/2008

Software Transactional Memory

* Plan to use an open-source STM library, XSTM, for
this research

« XSTM:
— Object based STM in Java
— Provide preliminary object replication

— Two-phase commit is used for replica coordination.
However, the coordinator is assumed to be failure-free

4/9/2008 Wenbing Zhao, NEONET-2008

Fault Tolerance Computing
Using STM

* System model:
— Asynchronous systems with fail-stop faults

— 2f+1 server replicas to tolerate up to f faulty
replicas (one as primary and 2f as backups)

— Each remote operation is mapped into a
single transaction

— Consider only client-server interactions

4/9/2008

Fault Tolerance Computing
Using STM

* Basic operation

— Client sends its request to the primary, if it
does not receive a response promptly, it
retransmit to all server replicas

— The primary executes the request and
coordinate with backups using a replication
algorithm before it ships the response out

— Each backup maintains a timer to detect the
primary failure. It initiates a V|ew change (i.e.,

4/9/2008 Wenbing Zhao, NEONET-2008

9

Replication Algorithm — Normal Operation

Request | Prepare Accept - Reply

7

Client

Primary: 0

o
EEEAVARVARN

| Prepare | Accept Commlt

Prepare-Ack Accept-Ack

4/9/2008 Wenbing Zhao, NEONET-2008 \ L N

Replication Algorithm — View Changew

Viewv View Change {View Installation | View v+1
0 ——— f
Primary for v g | /‘ §
— D
(Primary for W\
v+1) g | §
2 | E—
. View-change New-view
New-view-ack
4/9/2008 Wenbing Zhao, NEONET-2008 \ \ \ \ j 0\\

11

Replication Coordination - Detalls

* At the end of execution of a request, the primary
tries to commit the transaction.

— If it is aborted, the primary will reinsert the request in
the queue for retry. If it is committed, the primary starts
the replication algorithm for the request

* What information is included in the messages
exchanged between the primary and backups?

— Client’s request

— All objects that have been updated during the
execution of the request

- J
>

O . e
R Y W
L

~——— ~—

4/9/2008 Wenbing Zhao, NEONET-2008

Optimization
* Assuming the initial membership of the replicas
Is determined statically, which is typically the
case, the prepare phase can be omitted

Req Accept /ReMy/‘

Primary: 0O

FERRVARY

4/9/2008 Wenbing Zhao, NEONET-2008°

15

Optimization

* Load balancing: partitioning state, each
partition is in charge by one replica and
that replica is the primary for its partition
— All replicas are actively executing, further

Increasing the throughput

— If a transaction spans more than one partition,
a distributed commit will have to take place =>
requires more sophisticated infrastructure
support (i.e., a replicated coordination service)

0 0 0 e —
— Y g ~ . 5 W .99 = ¢
E— — S L o N

4/9/2008 Wenbing Zhao, NEONET-2008

14

Conclusion and Future Work

* We propose to use passive replication and STM

to enable highly concurrent fault tolerance
computing

* Future work

— Implementation of the proposed framework

— |dentify practical applications and demonstrate the
effectiveness of our framework

4/9/2008 Wenbing Zhao, NEONET-2008°

